Machine Learning and Atom-Based Quadratic Indices for Proteasome Inhibition Prediction

The atom-based quadratic indices are used in this work together with some machine learning techniques that includes: support vector machine, artificial neural network, random forest and k-nearest neighbor. This methodology is used for the development of two quantitative structure-activity relationship (QSAR) studies for the prediction of proteasome inhibition. A first set consisting of active and non-active classes was predicted with model performances above 85% and 80% in training and validation series, respectively. These results provided new approaches on proteasome inhibitor identification encouraged by virtual screenings procedures
http://repository.vnu.edu.vn/handle/VNU_123/11510

Nhận xét

Bài đăng phổ biến từ blog này

NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC CỦA NẤM TRẮNG RỄ DÀI OUDEMANSIELLA RADICATA

Biện pháp quản lý học sinh nội trú ở trường Trung cấp Kỹ thuật - Nghiệp vụ Hải Phòng : Luận văn ThS. Giáo dục học: 60 14 05

Phát triển giảng dạy như một nghề